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earlier neutron diffraction determination of the barium
titanate structure referred to above, (Dahner, Frazer
& Pepinsky, 1955), so that abnormally large standard
deviations of the parameters are not revealed. In view
of the experience gained with barium titanate, there
is good reason to suspect that they may be large, and
the models proposed must be accepted with caution.
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Parameter Interaction in Least Squares Structure Refinement
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The correlation matrix gives a good indication of the interdependence of parameters in the course
of refinement. Very strong interactions, i.e., high correlations, are essentially independent of the
quality of the data, but depend on the trial structure model, including all parameters and atomic
scattering factors, and to some extent on the number of data. Very strong interactions imply that the
parameters involved could be indeterminate. Detailed illustration of the importance of the cor-
relation matrix is given by results from investigations of the structures of a grossularite, of tetragonal

BaTiO, and of LiMnPO,.

Introduction

Temperature and scale factors obtained in structure
refinements are perhaps not as reliable as might be
indicated by error estimates. The character of the
thermal parameter function whether isotropic or an-
isotropic is such as to invite into it errors of various
sorts. These include errors in intensity measurement,
in absorption and extinction correction and in atomic
scattering factors, particularly when correction has
not been made for dispersion or when the spherical
symmetry approximation is not valid.

Templeton (1955) has predicted that neglect of the
real part of the dispersion correction would strongly
affect the scale and thermal parameters. This is equiv-
alent to saying that strong interaction is expected
between the atomic scattering factors and the scale

and thermal parameters. In the case of the refinement
of the yttrium iron garnet structure it was shown
(Geller & Gilleo, 1959) that inclusion of the dispersion
corrections resulted only in large changes in the scale
factor (from 1-00 to 1-17) and in the thermal param-
eters of Y3+ (from 0-16 to 0-40 A2) and of 02~ (from
2:05 to 119 A2). The change in the temperature factor
of the Fe3+ ion was negligible despite the fact that the
real part of the dispersion correction for this ion was
—3'7e as against —1-3e for the Y3+ ion.

The effects of the interactions described above, how-
ever, are usually not included in the error estimates.
As another example, one may say that all theoretical
atomic scattering factors are only an approximation
particularly for atoms which have electronic clouds
which in many structures deviate substantially from
spherical symmetry. Such errors as may occur from
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this approximation could be absorbed in the thermal
and scale parameters without necessarily being in-
cluded in the error estimates of these parameters.

But now suppose that we decide on the use of cer-
tain atomic scattering factors in our model and assume
that these are absolutely correct. We further assume
a good trial structure which includes these atomic
scattering factors and that our data weighting system
is unbiased. Then the standard deviations calculated
by solving completely the set of normal equations
give, in the least squares sense, the correct estimates
of error. It should be pointed out that these are the
marginal standard deviations which include the effects
of correlation. Therefore, theoretically, these error
estimates may be considered to be conservative. That
is to say, any conditional variance of a component of
the parameter vector cannot be greater than the vari-
ance. (See, e.g., Anderson, 1958.)

The interdependence of two or more structural pa-
rameters can cause great difficulty in attempts to re-
fine structures. Strong interactions may completely
prevent refinement even when the data used are of
high precision. The least squares refinement program
written by Busing & Levy* (1959) now makes it pos-
sible to see what such interactions may be like. In
recent work, to be reported separately, on the refine-
ment of the structure of guanidinium aluminium sul-
fate hexahydrate (Geller & Katz, 1962), it became ap-
parent that although the general features of the strue-
ture were correct and as originally reported for the
gallium isomorph (Geller and Booth, 1959), the struc-
ture was unrefinable from the available data. This is
despite the fact that the three-dimensional data used
appear to be quite accurate. In the present paper,the
relation of the correlation coefficients to the observed
results of least squares calculations on the structures
of a grossularite, of tetragonal BaTiOs and of LiMnPO4
will be detailed.

The correlation matrix

The Busing-Levy least squares program sets up the
entire matrix a and the vector v of the normal equa-
tions inverts a and solves the equations exactly. The
matrix of normal equations, a, and its inverse b may
be obtained from the binary tape translated into deci-
mal by an auxiliary program. A special program patch
for obtaining v in the output has been written by Miss
D. C. Leagus of these Laboratories. For completeness
the various relationst are listed below:

aiy=2 () (w)D:)()/ (w)Ds)
v =2/ (w)D:)()/ (w)4)
bij=Az/d

Y| pi= Zjbij?)j .

* A program for two-dimensional refinement written by
W. C. Hamilton mainly for use with neutron diffraction data
also makes this possible.

T Wherever possible, the Busing-Levy notation will be
used.
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In these relations, the D; are the derivatives;
A =[(sign of sgF)|Fo|]—sF¢,

where sq is the scale factor; Ay is the cofactor of ay;
d is the value of det a; the p; are the parameters.

At the end of a least squares cycle the standard
error of Ap;, which is then also that of p;, is given by

o(pi* = Voul[ S (Y (w) Ay — élﬁpkvk]/(m—n)}*’r :

By analogy, the covariance
o (pip))* = by[ X (Y (w)4)? —kz:lprk]/(m—n)T .
The correlation coefficient

( Vi = o(pipy) _ bsj _
QPP = oo Vouybs %7

The normalized inverse matrix, with terms gqy, is the
correlation matrix; that is, all the information needed
to obtain the correlation matrix is obtained by the
Busing-Levy program in the course of the least
squares refinement cycle. A program patch to normal-
ize the inverse matrix has been written by Misses
D. C. Leagus and B. B. Cetlin and the correlation
matrix is now obtained routinely by the author.

From the above expression for g, it is seen that
in any cycle the correlation coefficients are inde-
pendent of the sum of the residuals and are directly
related to the structure model. That is, the i values
depend on the derivatives evaluated with the given
set of parameter values and atomic scattering factors.
It is possible that some fairly strong interactions
between parameters could be caused by large error
in one or more of the parameters; on the other hand,
it is also possible that large parameter errors could
cause uncoupling of two strongly interacting param-
eters (Geller & Katz, 1962). But there is only one way
in which data of poor quality could lead to large
interaction: by deviating a parameter from its true
value in such a way as to cause such interaction.

As indicated earlier, the interest of the author in

* It should be kept in mind that theoretically the quantities
we call standard error, covariance and correlation coefficient
have no relevance to the parameter values until convergence
has been attained. However, it will be clear that examination
of the correlation matrix and the ¢’s gives iinportant practical
information in any stage of the analysis.

1 In these expressions the A’s are the initial ones; that is
to say, the term

Z(Yw) Ay~ 2 Apeor

is an estimate of the correct sum of squares of the residuals.
If the problem were truly linear, the result would be exact.

1 It should be kept in mind that theoretically the quantities
we call standard error, covariance and correlation coefficient
have no relevance to the parameter values until convergence
has been attained. However, it will be clear that examination
of the correlation matrix and the ¢’s gives important practical
information in any stage of the analysis.
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the correlation matrix derived from work on the re-
finement of the structure of guanidinium aluminum
sulfate hexahydrate. In this case there are many large
interactions of all types* except between scale and
positional parameters. Now in order to gain confi-
dence that these numerous interactions were prevent-
ing determinacy of the structure, some definitive work
has been done on three previously investigated struc-
tures. Even though only four structures have now
been looked at in this fashion, there is substantial
evidence that it is advisable always to examine the
correlation matrix or the equivalent before drawing
final conclusions as to the meaning of the least squares
refinement.

Refinement of the structure of a grossularite

The structure of a grossularite crystal was recently
refined by Abrahams & Geller (1958) by means of the
Sayre program and with the use of selected data
which were particularly sensitive to the oxygen posi-
tional parameters, the only variable positional param-
eters in the structure. The reflections used were those
for which &, I are odd, k£ even (h, k, I permutable).
The Al atoms contribute nothing to these reflections
and only O atoms contribute to those with k=4n.
The net contribution of the Ca and Si atoms to the
remaining reflections is of the form +8(fZ, —fZ).
Now, the refinement proceeded easily to convergence
giving reasonable values for the isotropic tempera-
ture factors of the atoms involved. These are 1-88,
0-59 and 0-77 A2 for O, Si and Ca respectively. The
oxygen positional parameters are (—0-0389, 0-0456,
0-1524). Two completely unrelated weighting methods

* The interdependence of the parameters of guanidinium
aluminum sulfate hexahydrate can be understood on a
structural basis.

gave essentially the same results.* Standard deviations
especially for the O positional parameters (0-0004—
0-0005) were low.

When we obtained the Busing—Levy program, we
tried it on the same data with at first rather disturb-
ing but interesting results. The temperature factors
of the metal ions virtually exploded. The O tempera-
ture factor decreased, but changes in the O positional
parameters were not statistically significant. The
course of the refinement cycles is shown in Table 1.

It was noticed in the cases of 15 of the reflections,
that the A’s had values greater than 8 and so a rejec-
tion test was included. This of course, did not help
the situation (Table 2). It seemed rather obvious that
the trouble stemmed from the complete interdepen-
dence of the metal ion temperature factors. We had
chosen data which did not have any independent
contributions from the metal atoms. The use of the
Sayre program, which neglects the off-diagonal terms,
had nevertheless produced physically reasonable re-
sults.

Having remembered this case, it was a simple
matter to return to it for further investigation. Using
100 reflections and no rejection test we started with
the same initial parameters shown in Table 1. It was
necessary to carry out only two cycles to make the
points we wish to make. Of course, the resulting
parameter values are exactly the same as those shown
for the first two cycles in Table 1. In Table 3, we show
the correlation matrices for these two cycles. The
parameters are designated by the numbers given in
Table 1.

Note that although some of the smaller values, such
as for g1,2 and 1,3 decrease in the second cycle, the
really large ones such as those of g1,» and gz 3 stay

* The parameter values given here are the averages of the
results of refinement by the two different weighting schemes.

Table 1. Course of refinement of grossularite structure
All 100 reflections included, G.G. weights*

Parameter Starting

number Parameter values Cycle 1 Cycle 2 Cycle 3 Cycle 4
1 s 1-000 0-9685 0-9624 0-9624 0-9607
2 Tca (A2) 077 314 4-69 3:79 3-89
3 Ts; (A2) 0-59 3-63 6-35 501 533
4 o0 —0-039 —0-0382 —0-0383 —0-0382 —0-0383
b Yo 0-046 0-0464 0-0460 0-0460 0-0461
6 20 0-152 0-1521 0-1520 0-1520 0-1521
7 To (A2) 1-88 1-39 1-35 1-34 1-34

Standard deviations

1 0-0266 0-0248 0-0256 0-0252
2 0-50 0-84 0-84 0-77
3 0-63 1-26 1-59 1-36
4 0-00058 0-00052 0-00053 0-00053
5 0-00057 0-00052 0-00052 0-00052
6 0-00056 0-00051 0-00051 0-00051
7 0-17 0-15 0-15 0-15

* See Abrahams & Geller (1958).
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Table 2. Course of refinement of grossularite structure
Reflections rejected if 4 > 8:00, G.G. weights

Parameter Starting
number Parameter values Cycle 1 Cycle 2 Cycle 3 Cycle 4
1 s 1-00 0-9981 0-9766 0-9666 0-9659
2 Tca (A2) 0-77 2:47 3-87 4-34 4-33
3 Tsi (A?) 0-59 2:73 4-84 5-81 587
4 zo —0-039 —0-0384 —0-0387 —0-0387 ~—0-0387
5 Yo 0-046 0-0458 0-0455 0:0454 0-0454
6 zo0 0-152 0-1515 0-1511 0-1510 0-1510
7 To (A2) 1-88 1-76 1-53 1-44 1-44
Number of reflections included 85 87 88 88
Parameter
number Standard deviations
1 0-0221 0-0220 0-0222 0-0223
2 0-36 0-48 0-57 0-55
3 0-45 0-69 0-96 1-02
4 0-:00040 0-00039 0-00038 0-00038
5 0-00040 0-00039 0-00038 0-00037
6 0-00039 0-00039 0-00038 0-00037
7 0-13 0-12 0-12 0-12

essentially constant, as they would for subsequent
cycles. The value of g2,3, 0-99, suggests a very strong
interdependence of the thermal parameters of the
metal jons, which is what would be expected. There
is also a strong unsuspected interdependence of the
scale factor and oxygen thermal parameter as sug-
gested by the values, 0-80-0-81, of g1,7. This is further
ascertained by examining the results in Tables 4 and 5
obtained from the refinement based on the 37 reflec-
tions which have contributions from oxygen ions only.
Again the value of p; 5 indicates a strong interdepen-
dence of the scale factor and oxygen thermal param-
eter. The value of gs4 appears to indicate a weak
interdependence of the x and y parameters of the
oxygen ion.

Table 3. Correlation matrices from two cycles
of refinement of grossularite structure.
All 100 reflections used

Cycle 1
1 2 3 4 5 6 7
1 1-00 0-25 0-21 004 —0-11 0-01 0-80
2 1-00 099 —-010 —-0-12 -0-10 0-19
3 1:00 -—0-10 —-0-12 —0-10 0-16
4 1-00 0-13 0-02 0-02
5 1:00 005 -—010
6 1-00 0-00
7 1-00
Cycle 2
1 2 3 4 5 6 7
1 1-00 0-06 0-02 0-05 —0-09 0-02 0-81
2 1-00 099 —0-14 —010 —0-07 0-02
3 1:00 —014 —-0-09 —007 —0-01
4 1-00 0-13 0-02 0-03
5 1-00 0-06 —0-09
6 1-00 0-01
7 1-00

We notice that the Sayre program gave values of
thermal parameters which on first inspection appear

to differ markedly from those obtained by the Busing—
Levy program. First, we mention that because the

Table 4. Refinement of grossularite oxygen
parameters only

G.G. weights
Param-
eter Param- Starting Abrahams
number eter values Cycle 1 Cycle 2 & Geller*
1 s 1-000 0-8914 0-8938 1-000
2 z —0-0383 —0-0382 —0-0381 —0-0386
3 Y 0-0460 0-0458 0-0458 0-0456
4 z 0-1520 0-1518 0-1518 0-1522
5 T 1-40 1-11 1-10 1-79
Standard deviations
1 0-0350 0-0339
2 0-00062  0-00066  0-00054
3 0-00059  0-00061 0-00053
4 0-00067  0-00070  0-00052
5 0-19 0-20 0-096

* Weights same as those used here. Sayre’s least-squares
program used on 100 reflections.

Table 5. Correlation matrices from two cycles of
refinement of grossularite structure
37 reflections to which only oxygen ions contribute

Cycle 1

1 2 3 4 5
1 1-00 0-06 0-05 —0-05 0-87
2 1-00 0-14 0-01 0-06
3 1-00 0-23 0-06
4 1-00 0-01
5 1-00
Cycle 2
1 2 3 4 5
1 1-00 0-07 0-0¢ —005 0-87
2 1-00 0-15 0-03 0-06
3 1-00 0-23 0-06
4 1-00 0-01
5 1-00
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Sayre program we used applies the scale factor to
the Fo, there will be a tendency for the thermal
parameters to calculate high and the scale factors
low when this program is used (see Cruickshank,
1959; Geller and Durand, 1960). Secondly, if there is
any correlation at all, the error estimates given by the
diagonal term approximation will be low.

Thirdly, if both the complete solution and diagonal
term approximation truly converge, the parameter
values obtained by both methods should be the same.
When there is large correlation, both methods may
fail to converge (i.e., there will be oscillations) or one
or both methods may only appear to converge. When
the complete solution does not really converge, and
the diagonal term approximation appears to converge
as in the present case, then only fortuitously could
the results so obtained be physically correct, since it
is not in the data to provide the true values of the
parameters. That is to say, if enough iterations were
made with the diagonal term approximation one
should expect the ultimate parameter behavior to be
the same as would be obtained by the use of the
complete normal equations matrix. It should be kept
in mind, however, that when high correlation exists,
rounding-off errors in the matrix inversion could also
cause difficulty in convergence.

We now examine the results of the calculations on
the grossularite data to see what further conclusions
we may obtain from the results.

The complete solution of normal equations for the
100 data problem gave physically impossible values
of the Ca and Si isotropic thermal parameters. This
is true not only of the mean values, but of the lower
30 limit values: Cycle 4 values, Tables 1 and 2, are
respectively 1-58 and 2-68 A2 for Ca and 1-25 and
2-81 A2 respectively for Si. Because it looks as though
convergence was attained for these parameters in
the two cases, in the least squares sense these look
like the correct values. The indeterminacy is shown
mainly by the large standard deviations. No seemingly
‘correct’ calculation, however, which gives physically
impossible results even wupon actual convergence can
have a really sound basis. In this case, it is obvious
that the fundamental difficulty was a biased weight-
ing of the data.

In a statistical problem involving two or more
parameters, it is customary to speak of a confidence
region similar to the confidence limits in the univa-
riate case. If there are n parameters, the confidence
region can be represented by an ellipsoid in the n-di-
mensional space. Having decided on the level of sig-
nificance this ellipsoid will contain the true values of
D1, P2, - - -, Pu With the desired probability. The center
of the ellipsoid is given by the vector of the estimated
mean values of the parameters fx@l, D2, ..., Pr); the
size and shape of the ellipsoid will depend on the in-
verse of the covariance matrix, in our case, a, and on
the desired significance level.

In order to make use of the theorems of mathe-

matical statistics we assume a linear model and nor-
mally distributed errors. Then (i—pmo)a(li—po) is
distributed as o2y.2. Here {i is the estimate of Mo,
the true Y. The squared standard error of fit, s2=
(Y (w)A)2/(m—mn), is distributed as o®y2_,/(m—n).
The ratio of the two

(ﬁ—uo)’a(ﬁf D)NLXL .
SW@AR  Bomon T
m—n

Thus a confidence region for {i, the mean vector,
will be given by

(B —Ho)a(ii—po) < ns2Fr,m-n()

where Fn, m-n(c) is the o probability point for signif-
icance level of the F-distribution with » and m—n
degrees of freedom. That is, if we compute this for a
particular {i, we should have confidence 1—« that
the ellipsoid (the expression with the = sign) con-
tains Ho.

We could test the null hypothesis, that is: whether
a given vector )=y by putting the vector {®
into the above expression also. On the other hand,
should we wish to test the hypothesis pU)=p®,
(@O — @) a(@® —{2) should be compared with
2ns2Fy,m-n(o). If the problem is essentially linear,
the matrix a should be essentially the same for the
two samples.

We now look at the different {i®) obtained for
grossularite. We know that the data from which these
vectors were obtained are highly correlated: they are
not only from the same population, but are the total
sample or subsets of it. However, we shall proceed
as if the fi®) result from independent samples. We
shall treat only the oxygen and scale parameters and
assume that the a matrix obtained from the second
cycle of the ‘oxygen only’ calculation is common to
all sets of data. The a matrix is

5 523 5 -508 3 152 6 156 4 —785
8 337 7 —-521 4 —-723 4 151

8 404 7 —-791 4 —665

8 307 5 —233

4 154

These numbers have the following meaning: The
first digit is the power of 10 by which the remaining

number beginning with a decimal point is multiplied.
For example 5 523 means 0-523 x 105 and 4 —785
means —0-785x104. (The a;;, 7=j, are not written
because ai;;=a;:.) We designate by:
B@), the results of cycle 2, Table 4
1), the results of cycle 4, Table 1
B3), the results of cycle 4, Table 2
i), the results of Abrahams and Geller (see Table 4).

We shall test the differences fi(® — i), {3 —pm
and {i4)—{i), These have the elements:
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G P {C DT { B (C) B (PG
s 0-0669 0-0721 0-1062
© —0.0002  —0-0006  —0-0005
y 0-0003  —0-0004  —0-0002
z 0-0003  —0-0008 0-0004
T 0-24 0-34 0-69

The value of % is 14-09; the values of Fs s2(cx) and
of 2ns2Fs, 30(x) =140-9F5 32(x) are:

o(significance level) Fy go(x)  2n82Fj 55(0x)
0-10 2-04 287
0-05 2:51 304
0-025 2-99 421
0-01 3-65 514
0-005 4-17 588

and the values of (R —iM)a(@®) —{m) are:

o

b (@) — i) a ({0 — §0)’
77-4
959

194-4

B WM

In order that a difference be significant at a given
level, (fi®—fiM)a(ji®) —pm) must be greater than
2ns2Fs s0(cx). It is seen that under the assumptions
made none of these differences is significant, and thus,
with the present data at least, the scale and oxygen
thermal parameters are also effectively indeterminate.

It should be pointed out that in the above calcula-
tion, the application of the complete a matrix to
i gives the values of these parameters obtained
from the diagonal term approximation, the error esti-
mates that would be obtained from the Busing-Levy
program when amplitudes are evaluated with these
particular parameter values. These error estimates are
certain to be higher than those obtained from the
diagonal term approximation but are also apt to be
somewhat higher than those obtained for k=1, 2, 3.

Even if we simply took univariate confidence limits
around each member of each set we would see results
in agreement with those obtained above. Since it is
quite obvious that the positional parameters are not
significantly different, we shall only examine the scale
and thermal parameters in this manner. We first take
3¢ limits using the estimated errors of each case.

k 1 2 3 4
s 0-7864-0-9964 0-8856-1-0392 0-8990-1-0328

T 0-50-1-70 1-04-1-64 1-08-1-80 1-50-2-08

We see that the overlap is such as to indicate that
these parameters are not significantly different.

We might also examine the results of applying the
Student t-test to the differences of results for individual
parameters. This test makes use of the diagonal terms
in the inverse matrix; that is, to test a difference:

(pe®) — ps®)/(2buis®)t < tm-n(x) .

Therefore ¢ also includes effects of correlation. How-
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ever a confidence region resulting from the total
number of confidence intervals

(P — o)/ (Bus?)} < tm-n(x)

will be a rectangular parallelotope in the #-dimensional
space, and therefore only an approximation to the
ellipsoid described earlier.

As an example, let us apply the t-test to ps4) —pst).
We have:

(ps14) — ps M)/ (2bs582) E = (o) — To1)/(0-20)/2)
=0-69/0-28 =246 .

This appears to be significant at the 2% level. Actu-
ally because there are five parameters being con-
sidered, the difference is really significant at the 10%
(i.e., 1—(0-98)%) level. It is seen that this test gives
somewhat greater significance to the difference than
the earlier test in which the parameter vector differ-
ences were tested by means of the F-distribution.

We caution the reader that the above results are
in theory no better than the assumptions on which
they are based. The assumption of independence of
the sets of data is unwarranted. The results of the test
using the Snedecor F-statistic appear to corroborate
the conclusion that could been drawn intuitively
namely, the temperature and scale parameters are
not determinable from the data, but the positional
parameters of the oxygen ions are accurately deter-
minable.

The test described here should be very useful in
deciding whether differences in results of structural
analysis on different crystals of the same compound
are significant. Also the standard errors obtained
from the least squares calculation are not alone suf-
ficient to describe the results when there is high cor-
relation. Such correlation could make unlikely cer-
tain combinations of values of parameters. Thus in
order to obtain an idea of the parameter behavior,
one should really compute a confidence region by use
of the F-distribution as described earlier. This is only
meaningful however, when there is confidence that
convergence has been attained.

The tetragonal BaTiO; structure

Some time ago Evans (1952) carried out an investi-
gation of the BaTiOs structure. He collected extremely
accurate kOl data with Mo K« radiation employing
a Geiger counter. Despite the fact that he attained
extremely good agreement between calculated and
observed amplitudes, he was forced to conclude that
the structure was essentially indeterminate. From
careful consideration of the values of certain pairs of
derivatives, Evans concluded that there was strong
interdependence in five pairs of parameters. In fact,
he also concluded that it appeared that the only
parameters that could be established unambiguously
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were ﬁu(Ba), /311(01), and ﬂ33(011) (Table 6) We de-
cided to examine the correlation matrix obtained
from at least one refinement cycle.

Table 6. Results of least squares calculation

on BaTiOs
Parameter Starting  ‘Corrected’
number Parameter values values o4
1 s 1-000 0-9682 0-0142
2 z(O1p) 0-5000 0-6460 0-0967
3 B11(011) 0:00941 0-01113 0-00351
4 Boo(O11) 0-01412 0-09369 0-03598
5 Bs3(O11) 0-01381 —0-01848* 0-01544
6 2(Org) —0-0260 —0-0551 0-0171
7 B11(01) 0-01412 0-01598 0-00484
8 B33(01) 0-00767 0-00428 0-01514
9 2(T1) 0-5120 0-5313 0-01651
10 f11(TH) 0-00722 —0-00515* 0-00547
11 B33(Ti) 0-00460 —0-00465* 0-00892
12 B11(Ba) 0-004214 0-00371 0-00033
13 B33(Ba) 0-00430 0-00611 0-00120

For starting values
R factor (neglecting multiplicity) = 0-049
Weighted R factor, [Z'(} (w)4)213/[Z(V(w)F,)2]% = 0-049
[Z(V (w)A)?[(m—n)]t = 0-810
After calculation, estimated [Z(}/(w)4)%/(m—n)]} = 0-794

* Physically impossible.

In the calculation of structure factors, the atomic
scattering factors for Ba2+ were taken from the tables
calculated by Thomas & Umeda (1957) with correction
for dispersion* (Dauben & Templeton, 1955). The
atomie scattering factors for Ti4* were taken from the
tables of James & Brindley (1931) also with correc-
tion for dispersion*. The atomic scattering factors of
0O2- are those of Berghuis et al. (1955) for O corrected
for ionicity as described elsewhere (e.g., Abrahams &
Geller, 1958). The data used were those given in
Evans’ report. All data with sin? §/42 < 0-25 which
suffered from extinction were weighted zero, the re-
mainder being weighted unity. The starting param-
eters were essentially those which Evans felt to give
the most reasonable structure. The results of the
least squares cycle are given in Table 6. These results

* Real part only.

Table 7.
1 2 3 4 b} 6
1 1-00 —0-58 —0-02 0-26 0-57 0-55
2 1-00 —006 —013 —0-82 —0-88
3 1-00 —003 —0-20 —0-10
4 1-00 0-02 0-11
5 1-00 0-83
6 1-00
7

are expected, in view of the discussion given by Evans.
The Ap; and standard deviations are very large and
it is obvious that real convergence is unattainable.
Now let us look at the correlation matrix given in
Table 7. Evans had concluded that the strongest inter-
actions occurred between z(Ti) and fs3(Ti), 2(O1) and
‘333(01), 2(011) and ﬁzz(Ou), ﬂu(Ti) and ﬂzg(On), and
z(Ba) and fa3(Ba). We do not observe a ¢ value for
the last one because in our calculation, z(Ba) was
held constant. The g4 values for the others are res-
pectively po,11=—099, 068=019, g25=—0-82 and
04,10= —0-99.

The value of gs,s appears to be quite low; the other
three definitely corroborate Evans’ findings. The pa-
rameter z(O1) does interact strongly however with the
Bas of the Orr atom, that is, g5, has the value 0-83.
In fact, there are several other very strong interac-
tions as can be seen in Table 7, e.g., g1,12, 02,6, 05,13,
o11,13. The large interactions, especially 9,11 and ga,10,
cause the indeterminacy of the positional parameters
as well as of the scale factor and of most of the thermal
parameters, at least based on the pinacoidal data
used.

Table 7 indicates that the parameters pBi1(0.1),
f11(01) and Bs3(01) are only weakly correlated with
other parameters. However, we have not tested for
interaction with the Ba parameters.

To show further the reliability of some of the above
conclusions, we give the results of a calculation on the
BaTiOs; in which we inadvertently interchanged the
values of the Evans’ (1952) O thermal parameters
o and p. The starting parameters were those given
in Table 8. Without considering statistical significance,
many of the results differ from those obtained when
the Opf-values of Table 6 were used. Those which
are not too different (see Tables 6 and 8) are for
8, p11(Om), 2(01), f11(O1), Bui(Ba), fas(Ba).

The correlation matrix obtained from this calcula-
tion is given in Table 9. Note that in all cases of large
¢ in Table 7, the analogous values are large in Table 9.
This includes values down to 0-5 in Table 7. (Anal-
ogous values for some of these are somewhat lower in
Table 9.) The value for pe,s in Table 9 is the only one
that differs largely from that in Table 7, thus indicat-
ing a high sensitivity of gs,s to the values of the f’s

Correlation matrix from BaTiOs least-squares calculation

1 8 Y 10 11 12 13
004 —008 —025 —022 0-27 0-82 —0-34
—0-01 0-22 0-22 011 -023 —0-52 0-63
0-07 —0-07 0-11 —-0-03 —0-08 —0-08 0-13
0:02 —0-01 011 —-099 —-010 0-26 0-08
001 —0-08 —061 —0-01 0-59 0:55 —0-85
—0-03 0-19 —-0-20 —0-09 0-19 0-48 —0-57
1:00 —0-256 —0-11 -0-03 012 0-01 —0-08
8 1-00 0-31 0-01 —-035 —0-10 0-32
9 1.00 —-009 —0-99 —0-33 0-86
10 1-00 0-08 —023 —0-07
11 1-00 0-3¢ —0-86
12 1-00 —0-42

13 1-00
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Table 8. Least-squares calculation on BaTiO3
Incorrect f3’s for Orx

Parameter Starting  ‘Corrected’
number Parameter values values o

1 s 1-0000 0-9713 0-0130
2 2(Or1) 0-5000 0-6143 0-0890
3 B11(011) 0-01412 0-01076 0-00448
4 Bea(O11) 0-01412 0-05586 0:03655
5 Bas(Om1) 0-00921 —0-01143* 0:01527
6 2(Oy) —0-0260 —0:0606 0-:0234
7 $11(01) 0-01412 0-01557 0-00507
8 B35(01) 0-00767 —0-00820* 0-01654
9 2(Ti) 0-5120 0-5230 0-0193

10 B11(Ti) 0-:00722 0-00040 0-00577

11 Ps3(Ti) 0-00460 —0-00004* 0-01022

12 f11(Ba) 0-00424 0-00371 0-00032

13 Bs3(Ba) 0-00430 0-:00578 0-00138

For starting parameters
R factor (neglecting multiplicity) = 0-051
Weighted R factor, [X(V(w)4)213/[Z (V(w)F,)2]} = 0-051
[Z(V(w)A)2[(m—n)]} = 0-833
After caleulation, estimated [X((w)d)2/(m—n)]} = 0-825
* Physically impossible.

of Ox;. The results of this calculation are also indicative
of the non-linearity of the model.

Refinement of the structure of LiMnPO,

In a recent paper (Geller & Durand, 1960) on the
refinement of the structure of LiMnPOy, it was pointed
out that neglect of off-diagonal terms of the normal
equations matrix did not significantly affect the
results of the least-squares refinement. In fact, even
when only pinacoidal data were used and the off-
diagonal terms neglected, the results (including error
estimates), especially on the positional parameters,
did not differ significantly from those obtained with
the Busing-Levy Program. This could be, but is not
necessarily, an indication that the parameters are not
highly correlated.

The last refinement cycle was rerun to obtain the
correlation matrix. Of the 136 gi(¢+j) terms, only
25 had |pi;| values greater than 0-05; only 12 values
were greater than 0-10. Only four of the values were
greater than or equal to 0-35. These were for s — 7'y,
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0-78; s—Tp, 0:57; s—To,, 0-35 and Tyan—Tp, 047,
these numbers indicate fairly substantial interdepen-
dence of the scale factor and the thermal parameters
of Mn and P and between the Mn and P thermal
parameters. The values for s—7To, and s—70, were
each 0-23 and for T'mn— 70, T'Mn— To, and T'vin— Tos,
they were 0-15, 0-17, and 0-26 respectively. All twelve
greater than or equal to 0-10 involved interactions
between a scale factor and thermal parameter or
between two thermal parameters.

Discussion

We arrive now at the discussion of several questions
regarding interactions among parameters:

1. How do strong interactions arise ?

2. In what ways do they manifest themselves?

3. Is it possible to avoid them ?

4. What do we do about them if we cannot avoid
them ?

1. Origins of strong interactions

Initial indication of strong interactions which are
removed when the structure is ultimately refined are
caused by an initial trial structure which is far from
the true structure.* Data of poor quality might also
lead to coupling of parameters which are particularly
sensitive to certain of the more poorly estimated
intensities. (But see earlier discussion of the correla-
tion coefficient.)

The most important cause of interactions arises
from the nature of the structure on which the evaluated
derivatives depend. This has been amply demonstrated
by the detailed report by Evans on his work on BaTiO3;
and will be further corroborated by the forthcoming
report on the guanidinium aluminum sulfate hexa-
hydrate structure refinement attempts. In particular,
considerable overlap of crystallographically non-
equivalent interatomic vectors in the three-dimen-

* It should be kept in mind that an initially bad trial
structure may also tend to uncouple parameters which in the
‘true’ structure are coupled (Geller & Katz, 1962). Similarly
data of poor quality might tend to uncouple parameters
which should be coupled.

Table 9. Correlation matrizx from BaTiOz least-squares calculation with incorrect 8’s for Ox

1 2 3 4 5 6
1 1-00 —0-40 0-01 0-18 0-41 0-40
2 1-00 0-02 0-01 —-079 —-0-92
3 1-00 0-00 —-0-15 —0-06
4 1-00 —0-12 —0-04
5 1-00 0-85
6 1-00
7

7 8 9 10 11 12 13
0-08 0-18 —0-12 —-0-14 0-12 0-78 —0-20
—0-10 —-0-29 —-002 —0-02 0:05 —0-42 0-56
0-08 —0-10 0-07 0-00 —004 —0-05 0-08
0-:05 —0-01 020 —-099 —022 0-16 0-22
0-07 041 —0-51 0-12 0-46 0-50 —0-87
0-06 0-58 —0-08 0-05 0-03 043 —0-60
1-00 —-021 —0-08 —006 0-09 0:04 —0-10
8 1-00 0-09 003 —015 017 —0-12
9 1-00 —0-18 —099 —0-25 0-79
10 1-00 020 —0-14 —0-21
11 1:00 —0-24 —0-76
12 1-00 —0-38

13 1-00
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sional Patterson would be indicative of potentially
strong interactions in pairs of positional parameters.*
This would occur most often for structures which have
a substructure.

Strong interactions could arise from extremely
incorrect weighting. For example, in the grossularite
case, we gave zero weight to all amplitudes with large
and independent contributions from the metal ions.
To obtain physically meaningful thermal parameters
for the metal ions, it would be necessary to include
at least some of these structure amplitudes in the
calculation. But to obtain the most accurate values
of the oxygen positional parameters either those
amplitudes to which only oxygen ions contribute
should be used or those actually used in the original
determination.

Another source of difficulty could be the nature
of the atomic scattering factors (see Introduction and
Discussion, Part 3).

2. Manifestation of strong interactions

The correlation matrix gives a measure of inter-
actions or correlations between pairs of parameters.

It is probable that difficulty in attaining con-
vergence is often a manifestation of strong interaction
among parameters. This is not to imply that the
discrepancy factor does not decrease to a low value,
but rather that it does and that the general features
of the structure are obviously correct. Yet oscillations
occur with each subsequent iteration and/or inter-
atomic distances obtained are improbable. Very large
error estimates resulting from the least-squares calcula-
tion also may indicate strong interactions.

It can be shown that if any |gyl], 27, is exactly
equal to unity, then the correlation matrix is singular,
It then follows that the determinant of a is zero and
therefore its inverse would not exist. In this case,
the equations would not have a unique solution. It
also follows that if two parameters are very nearly
completely interdependent, the determinant of the
normal equations will be very small. In such a case,
there will be a tendency for the error estimates to be
large. However, it should be kept in mind that the
values of the 4;; for weakly correlated parameters are
often lower than those for highly correlated ones

* For exzample, in the guanidiniumm aluminum sulfate
hexahydrate structure (Geller & Katz, 1960; Geller & Booth,
1959) there are two sets of crystallographically non-equivalent
N atoms in 3¢ and 6d of P31m. The N atoms in 6d are related
to those in 3c very nearly by 330, %30—(x0z; 0zz; Txz).
Because the Patterson function, of course, adds a center of
symmetry, sets of C—N and Al-N vectors will overlap. And
because of the nature of the structure, other peaks involving
these nitrogens will overlap. It is seen that derivatives of
the structure amplitudes with respect to the nitrogen positional
parameters will have closely related values, the exact depen-
dence breaking down only as a result of different anisotropic
thermal parameters and differences from the exact relationship
indicated above. This is the kind of situation found by Evans
in his analysis of the BaTiO, situation.

although this is not universally true. Also, as pointed
out earlier when the value of the determinant of a
is very small, rounding-off errors in the matrix inver-
sion also may cause difficulty in convergence.

3. Possibility of avoiding strong interactions

If the interactions are known to. arise purely from
the nature of the structure, as in the cases of BaTiOs
and guanidinium aluminum sulfate hexahydrate, it is
improbable that they can be entirely avoided either
by changing the structure analysis technique or by
changing the weighting. Because of the difference in
the nature of the X-ray and the neutron scattering
factor, neutron structure amplitude derivatives might
not couple parameters which X-ray structure ampli-
tude derivatives tend to couple.

Measurement of absolute intensities would decrease
the dependence of other parameters on scale factors.
However, because these intensities will have an error
associated with them, if the scale factors are not
allowed to vary, this error will be absorbed by the
thermal parameters or others with which the scale
factors would tend to interact.

In simple cases, reconsideration of the weighting
technique might lead to uncoupling. However, from
a realistic point of view, all weighting procedures are
essentially arbitrary. Thus, if substantially different
results are obtained by two different but seemingly
logical weighting methods, the lack of reliable informa-
tion for weighting has created an indeterminacy in the
problem.

It is interesting to contemplate the possibility of
finding by some means the exact relation between
highly correlated parameters. In such a case, it should
then be possible also to refine an otherwise ‘unrefin-
able’ structure.

4. Procedure to follow if it appears that strong inter-
actions cannot be avoided

It is certainly frustrating to find after having
collected and processed the data and carried out a
number of refinement cycles, sometimes at substantial
financial expense, that although a structure is gener-
ally correct, it is indeterminate in detail. This is an
extreme case. However, the X-ray structure analyses
of BaTiOs (Evans, 1952), of HCN (Dulmage &
Lipscomb, 1951) and of guanidinium aluminum sulfate
hexahydrate are in this category. In the extreme
case one should call a halt to the work at the point
that one is convinced and report the experience. It is
hoped that this paper and the subsequent one on the
guanidinium aluminum sulfate hexahydrate will con-
tribute to early recognition of such cases.

In fact, the present work suggests that whenever
possible a structure should be solved with the minimum
possible data. Once a fair trial structure is obtained,
it is then possible to calculate the correlation matrix
with the inclusion of any number of calculated deriva-
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tives even though the total data have not been
measured. A judgment of s2 could be made from those
data used to solve the structure and an estimate of
the confidence region could then also be made.

All this might not suffice, however, to give the
individual investigator the confidence needed to
abandon the work even if there is strong indication
that a refined structure is not feasible.

The cases which are not extreme are those in which
there may be apparent convergence but some large
correlations and error estimates. The calculation of
confidence regions should be worthwhile in such cases,
although with a large number of correlated parameters,
it is doubtful that it will be extremely useful. It is
especially important however to note by examination
of the correlation matrix which of the parameters
appear to be correlated and which of them do not.

The author wishes to thank Dr W. C. Hamilton for
his interest and constructive criticism, Dr C. L. Mal-
lows for several enlightening discussions on ma-
thematical statistics, Dr H.T. Evans, Jr. for per-
mission to use the data and quote some of the results
given in his report on BaTiOz, Dr B. C. Frazer for
discussions of the neutron diffraction investigation
(Danner, Frazer & Pepinsky, 1960) of the BaTiO;
structure, and Misses D. C. Leagus and B. B. Cetlin
for writing the program patches for the Busing-Levy
Program.

Several books and a paper by Box & Coutie (1956)
were useful in this work. The books are: Acton (1959),
Anderson (1958), Scheffé (1959) and Wilks (1946).
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Potassium Osmyl Chloride — Refinement of the Crystal Structure*
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The erystal structure of K,0s0,Cl,, first reported by Hoard & Grenko (1934), has been refined by
least-squares and Fourier calculations using three dimensional data. The crystals are tetragonal,
I4/mmm, with a,=6-991+0-004 and c,=8-752 +0-006 A. The two primary bond lengths in the
0s0,Cl,~~ ion were refined to: Os-0: 1:750 +0-022 A and Os-Cl: 2-379 +£0-005 A.

Introduction
The ecrystal structure of potassium osmyl chloride,
K20s0:Cls, was first determined by Hoard & Grenko

* This work was performed under the auspices of the U.S.
Atomic Energy Commission.

(1934) (referred as H.&G. in remaining text). At that
time the unit cell dimensions, space group and ap-
proximate values for the variable parameters of oxygen
and chlorine were established, as well as the location
of the osmium and potassium atoms in special posi-
tions. In conjunction with an extensive study of the



