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earlier neutron diffraction determination of the barium 
titanate structure referred to above, (Dahner, Frazer 
& Pepinsky, 1955), so that abnormally large standard 
deviations of the parameters are not revealed. In view 
of the experience gained with barium titanate, there 
is good reason to suspect that they may be large, and 
the models proposed must be accepted with caution. 
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The correlation matr ix gives a good indication of the interdependence of parameters in the course 
of refinement. Very strong interactions, i.e., high correlations, are essentially independent of the 
quality of the data, but depend on the trial structure model, including all parameters and atomic 
scattering factors, and to some extent on the number of data. Very strong interactions imply that  the 
parameters involved could be indeterminate. Detailed illustration of the importance of the cor- 
relation matrix is given by results from investigations of the structures of a grossularite, of tetragonal 
BaTiO 3 and of LiMnPO 4. 

In troduct ion  

Tempera ture  and scale factors obtained in s t ructure  
refinements are perhaps not as reliable as might  be 
indicated by error estimates.  The character  of the 
thermal  pa ramete r  function whether  isotropie or an- 
isotropic is such as to invite into it  errors of various 
sorts. These include errors in intensi ty measurement ,  
in absorpt ion and extinction correction and in atomic 
scattering factors, par t icular ly  when correction has 
not  been made  for dispersion or when the spherical 
symmet ry  approximat ion  is not  valid. 

Templeton (1955) has predicted t h a t  neglect of the 
real pa r t  of the dispersion correction would strongly 
affect the scale and thermal  parameters .  This is equiv- 
alent  to saying tha t  strong interact ion is expected 
between the atomic scattering factors and the scale 

and  thermal  parameters .  In  the case of the  ref inement  
of the y t t r i um iron garnet  s t ructure  it  was shown 
(Geller & Gilleo, 1959) t ha t  inclusion of the dispersion 
corrections resulted only in large changes in the scale 
factor (from 1.00 to 1.17) and in the thermal  param-  
eters of Y.~+ {from 0-16 to 0-40 ~2) and of 02-  {from 

2.05 to 1.19 ~e). The change in the t empera ture  factor  
of the Fe 8+ ion was negligible despite the fact  t ha t  the  
real pa r t  of the dispersion correction for this ion was 
- 3 - 7 e  as against  - 1 . 3 e  for the ys+ ion. 

The effects of the interactions described above, how- 
ever, are usual ly not  included in the error estimates.  
As another  example, one m a y  say t ha t  all theoretical  
atomic scattering factors are only an approximat ion  
par t icular ly  for a toms which have electronic clouds 
which in m a n y  structures deviate substant ia l ly  f rom 
spherical symmetry .  Such errors as m a y  occur from 
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this approximation could be absorbed in the thermal 
and scale parameters without necessarily being in- 
cluded in the error estimates of these parameters. 

But now suppose that  we decide on the use of cer- 
tain atomic scattering factors in our model and assume 
that  these are absolutely correct. We further assume 
a good trial structure which includes these atomic 
scattering factors and that  our data weighting system 
is unbiased. Then the standard deviations calculated 
by solving completely the set of normal equations 
give, in the least squares sense, the correct estimates 
of error. I t  should be pointed out that  these are the 
marginal standard deviations which include the effects 
of correlation. Therefore, theoretically, these error 
estimates may be considered to be conservative. That 
is to say, any conditional variance of a component of 
the parameter vector cannot be greater than the vari- 
ance. (See, e.g., Anderson, 1958.) 

The interdependence of two or more structural pa- 
rameters can cause great difficulty in attempts to re- 
fine structures. Strong interactions may completely 
prevent refinement even when the data used are of 
high precision. The least squares refinement program 
written by Busing & Levy* (1959) now makes it pos- 
sible to see what such interactions may be like. In 
recent work, to be reported separately, on the refine- 
ment of the structure of guanidinium aluminium sul- 
fate hexahydrate (Geller & Katz, 1962), it became ap- 
parent that  although the general features of the struc- 
ture were correct and as originally reported for the 
gallium isomorph (Geller and Booth, 1959), the struc- 
ture was unrefinable from the available data. This is 
despite the fact that  the three-dimensional data used 
appear to be quite accurate. In the present paper,the 
relation of the correlation coefficients to the observed 
results of least squares calculations on the structures 
of a grossularite, of tetragonal BaTi08 and of LiMnP04 
will be detailed. 

The correlat ion m a t r i x  

The Busing-Levy least squares program sets up the 
entire matrix a and the vector v of the normal equa- 
tions inverts a and solves the equations exactly. The 
matrix of normal equations, a, and its inverse b may 
be obtained from the binary tape translated into deci- 
mal by an auxiliary program. A special program patch 
for obtaining v in the output has been written by Miss 
D. C. Leagus of these Laboratories. For completeness 
the various relations~ are listed below: 

a i j=  Z ( ]/(w)D,)( V(w)D~) 
v i =  Z ( V(w)Di)(  ]/(w)A ) 

bi~ = A j i / d  
A p i  = Ejb~v~ . 

* A program for two-dimensional  re f inement  wr i t t en  by  
W. C. H a m i l t o n  ma in ly  for use wi th  neu t ron  diffract ion d a t a  
also makes  this possible. 

Wherever  possible, the  B u s i n g - L e v y  no ta t ion  will be 
used. 

In these relations, the D~ are the derivatives; 

A =[(sign of 8qF)]Fo]J-sqFc, 

where Sq is the scale factor; A~, is the cofactor of a,j; 
d is the value of det a; the p, are the parameters. 

At the end of a least squares cycle the standard 
error of Alp,, which is then also that  of p,, is given by 

n 

a(p,)* = Vb, ,{[ . ,~ ' (] / (w)A)2- .~,  Ap~v~]/(m-n)}½~f  . 
k=l  

By analogy, the covariance 
n 

a(p,p~)* = b ~ j [ 2 ( l / ( w ) A ) 2 - 2 A p k v k ] / ( m - n ) t .  
k = l  

The correlation coefficient 

a(p~pj) bij 
O(P*PJ)~- - a(pt)a(p~) - ]/b~]/bz = OiJ . 

The normalized inverse matrix, with terms O~J, is the 
correlation matrix; that  is, all the information needed 
to obtain the correlation matrix is obtained by the 
Busing-Levy program in the course of the least 
squares refinement cycle. A program patch to normal- 
ize the inverse matrix has been written by Misses 
D. C. Leagus and B.B.  Cetlin and the correlation 
matrix is now obtained routinely by the author. 

From the above expression for Q~j, it is seen that  
in any cycle the correlation coefficients are inde- 
pendent of the sum of the residuals and are directly 
related to the structure model. That is, the Q~j values 
depend on the derivatives evaluated with the given 
set of parameter values and atomic scattering factors. 
I t  is possible that  some fairly strong interactions 
between parameters could be caused by large error 
in one or more of the parameters; on the other hand, 
it is also possible that  large parameter errors could 
cause uncoupling of two strongly interacting param- 
eters (Geller & Katz, 1962). But there is only one way 
in which data of poor quality could lead to large 
interaction: by deviating a parameter from its true 
value in such a way as to cause such interaction. 

As indicated earlier, the interest of the author in 

* I t  should be kep t  in mind  t h a t  theoret ical ly  the  quant i t ies  
we call s t anda rd  error, covarianee and  correlat ion coefficient 
have  no relevance to the  pa rame te r  values unt i l  convergence 
has been a t ta ined .  However ,  i t  will be clear t h a t  examina t ion  
of the correlat ion ma t r ix  and  the a 's  gives h n p o r t a n t  pract ical  
in format ion  in a n y  stage of the  analysis.  

I n  these expressions the  A's are the  initial  ones; t h a t  is 
to say, the  t e rm n 

~7(]/(w)A) 2 - ZApkvlc 
k = l  

is an  es t imate  of the  correct  sum of squares of the  residuals. 
I f  the  problem were t ru ly  linear, the  resul t  would  be exact.  

:~ I t  should be kep t  in mind  t h a t  theoret ical ly  the  quant i t ies  
we call s t anda rd  error, covariance and  correlat ion coefficient 
have  no relevance to the  pa rame te r  values unt i l  convergence 
has been a t ta ined .  However ,  it  will be clear t h a t  examina t ion  
of the  correlat ion ma t r ix  and  the  a 's  gives i m p o r t a n t  pract ical  
in format ion  in a n y  stage of the  analysis.  
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the correlation matrix derived from work on the re- 
finement of the structure of guanidinium aluminum 
sulfate hexahydrate. In this case there are many large 
interactions of all types* except between scale and 
positional parameters, l~ow in order to gain confi- 
dence that these numerous interactions were prevent- 
ing determinacy of the structure, some definitive work 
has been clone on three previously investigated struc- 
tures. Even though only four structures have now 
been looked at in this fashion, there is substantial 
evidence that it is advisable always to examine the 
correlation matrix or the equivalent before drawing 
final conclusions as to the meaning of the least squares 
refinement. 

R e f i n e m e n t  of t h e  s t r u c t u r e  of a g r o s s u l a r i t e  

The structure of a grossularite crystal was recently 
refined by Abrahams & Geller (1958) by means of the 
Sayre program and with the use of selected data 
which were particularly sensitive to the oxygen posi- 
tional parameters, the only variable positional param- 
eters in the structure. The reflections used were those 
for which  h, 1 are odd, /c even  (h, k, 1 pe rmutab le ) .  
The  A1 a toms  con t r ibu te  n o t h i n g  to these  ref lect ions  
a n d  on ly  O a toms  con t r ibu te  to  those  w i t h  lc=4n. 
The ne t  con t r i bu t ion  of the  Ca a n d  Si a toms  to the  
r e m a i n i n g  ref lect ions is of t he  form ± 8 ( f ~ a - f ~ i ) .  
Now, the  r e f i nemen t  proceeded eas i ly  to convergence  
g iv ing  reasonab le  va lues  for the  isotropic  t empera -  
tu re  fac tors  of the  a toms  involved .  These  are 1.88, 
0.59 a n d  0.77 J~2 for 0 ,  Si a n d  Ca respec t ive ly .  The  
oxygen  pos i t iona l  p a r a m e t e r s  are ( - 0 . 0 3 8 9 ,  0.0456, 
0"1524). Two comple te ly  u n r e l a t e d  we igh t ing  me thods  

* The interdependence of the parameters of guanidinium 
aluminum sulfate hexahydrate can be understood on a 
structural basis. 

gave essentially the same results.* Standard deviations 
especially for the 0 positional parameters (0.0004- 
0"0005) were low. 

W h e n  we ob t a ined  the  B u s i n g - L e v y  p rogram,  we 
t r i ed  i t  on the  same d a t a  w i th  a t  f i rs t  r a t h e r  d i s turb-  
ing b u t  i n t e r e s t i ng  resul ts .  The  t e m p e r a t u r e  fac tors  
of the  me ta l  ions v i r t u a l l y  exploded.  The  0 t empera -  
tu re  fac tor  decreased,  bu t  changes  in the  O pos i t iona l  
p a r a m e t e r s  were no t  s t a t i s t i ca l l y  s ignif icant .  The  
course of the  r e f i nemen t  cycles is shown in Tab le  1. 

I t  was not iced  in t he  cases of 15 of the  ref lect ions,  
t h a t  t h e / l ' s  h a d  va lues  g rea te r  t h a n  8 and  so a rejec- 
t ion  t es t  was included.  This  of course, d id  no t  he lp  
the  s i tua t ion  (Table  2). I t  seemed r a t h e r  obvious  t h a t  
the  t roub le  s t e m m e d  f rom the  comple te  in te rdepen-  
dence of t he  m e t a l  ion t e m p e r a t u r e  factors.  W e  h a d  
chosen d a t a  which  d id  no t  h a v e  a n y  i n d e p e n d e n t  
con t r ibu t ions  f rom the  m e t a l  a toms.  The  use of t he  
Sayre  program,  which  neglects  the  off-diagonal  te rms ,  
h a d  never the less  p roduced  p h y s i c a l l y  reasonable  re- 
sults .  

H a v i n g  r e m e m b e r e d  th i s  case, i t  was a s imple  
m a t t e r  to r e tu rn  to  i t  for fu r the r  inves t iga t ion .  Us ing  
100 ref lect ions  a n d  no re jec t ion  t e s t  we s t a r t ed  w i t h  
the same initial parameters shown in Table i. It was 
necessary to carry out only two cycles to make the 
points we wish to make. Of course, the resulting 
parameter values are exactly the same as those shown 
for the first two cycles in Table 1. In Table 3, we show 
the correlation matrices for these two cycles. The 
parameters are designated by the numbers given in 
Table 1. 

Note that although some of the smaller values, such 
as for @i,2 and @1,a decrease in the second cycle, the 
really large ones such as those of @i,7 and @2,a stay 

* The parameter values given here are the averages of the 
results of refinement by the two different weighting schemes. 

Tab le  1. Course of refinement of grossularite structure 
All 100 reflections included, G.G. weights* 

Parameter Starting 
number Parameter values 

1 s 1.000 
2 Tca (A 2) 0"77 
3 Tsi ( i  2) 0"59 
4 xo -- 0"039 
5 Y0 0'046 
6 zo 0"152 
7 To (£3) 1.88 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 

0"9685 0.9624 0.9624 0.9607 
3"14 4"69 3.79 3.89 
3"63 6"35 5.01 5.33 

- -  0.0382 -- 0.0383 -- 0"0382 -- 0"0383 
0'0464 0'0460 0'0460 0'0461 
0"1521 0.1520 0"1520 0"1521 
1.39 1.35 1-34 1.34 

Standard deviations 

0.0266 0.0248 0.0256 0.0252 
0.50 0.84 0.84 0.77 
0.63 1.26 1.59 1.36 
0.00058 0.00052 0.00053 0.00053 
0.00057 0.00052 0-00052 0.00052 
0.00056 0.00051 0.00051 0.00051 
0.17 0.15 0.15 0.15 

* See Abrahams & Geller (1958). 
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Table 2. Course of refinement of grossularite structure 
Reflect ions  re jec ted  if /1 > 8.00, G.G.  weights  

P a r a m e t e r  S ta r t ing  
n u m b e r  P a r a m e t e r  values  Cycle 1 Cycle 2 Cycle 3 Cycle 4 

1 s 1.00 0.9981 0.9766 0.9666 0.9659 
2 Tca  (12) 0"77 2.47 3"87 4.34 4.33 
3 Tsi  (/~2) 0"59 2.73 4.84 5.81 5.87 
4 Xo -- 0'039 -- 0.0384 -- 0'0387 -- 0-0387 -- 0.0387 
5 Yo 0"046 0-0458 0"0455 0.0454 0"0454 
6 zo 0.152 0.I515 0.1511 0.1510 0.1510 
7 T o  (A 2) 1-88 1.76 1.53 1.44 1.44 

N u m b e r  of ref lect ions inc luded 85 87 88 88 

Parameter 
n u m b e r  S t a n d a r d  devia t ions  

i 0.0221 0.0220 0.0222 0.0223 
2 0.36 0.48 0.57 0.55 
3 0.45 0.69 0.96 1.02 
4 0.00040 0.00039 0.00038 0.00038 
5 0.00040 0.00039 0.00038 0.00037 
6 0.00039 0.00039 0-00038 0.00037 
7 0.13 0.12 0.12 0.12 

essentially constant, as they would for subsequent 
cycles. The value of ~2,8, 0.99, suggests a very strong 
interdependence of the thermal parameters of the 
metal ions, which is what would be expected. There 
is also a strong unsuspected interdependence of the 
scale factor and oxygen thermal parameter as sug- 
gested by the values, 0.80-0.81, of ~1,7. This is further 
ascertained by examining the results in Tables 4 and 5 
obtained from the refinement based on the 37 reflec- 
tions which have contributions from oxygen ions only. 
Again the value of ~1,5 indicates a strong interdepen- 
dence of the scale factor and oxygen thermal param- 
eter. The value of ~o3,4 appears to indicate a weak 
interdependence of the x and y parameters of the 
oxygen ion. 

Table 3. Correlation matrices from two cycles 
of refinement of grossularite structure. 

All 100 reflect ions used 
Cycle 1 

1 

1 1.00 
2 

Cycle 2 

1 

1 1.00 
2 

2 3 4 5 6 7 

0.25 0.21 0.04 --0.11 0.01 0-80 
1.00 0.99 --0.10 --0.12 --0.10 0.19 
3 1.00 - -0 .10 --0.12 - -0 .10 0.16 

4 1.00 0.13 0.02 0.02 
5 1.00 0.05 --0.10 

6 1.00 0.00 
7 1.00 

2 3 4 5 6 7 

0.06 0-02 0.05 --0.09 0.02 0.81 
1.00 0-99 - -0 .14 - -0 .10 --0.07 0.02 
3 1.00 --0.14 --0.09 --0.07 --0.01 

4 1.00 0.13 0.02 0.03 
5 1.00 0.06 --0.09 

6 1.00 0.01 
7 1.00 

We notice that  the Sayre program gave values of 
thermal parameters which on first inspection appear 

to differ markedly from those obtained by the Busing- 
Levy program. First, we mention that  because the 

Table 4. Refinement of grossularite oxygen 
parameters only 

G.G. weights  
P a r a m -  

e ter  P a r a m -  S ta r t ing  A b r a h a m s  
n u m b e r  e ter  values  Cycle 1 Cycle 2 & Geller* 

1 s 1.000 0.8914 0.8938 1-000 
2 x --0.0383 --0-0382 --0.0381 --0.0386 
3 y 0.0460 0.0458 0.0458 0.0456 
4 z 0.1520 0.1518 0.1518 0-1522 
5 T 1.40 1.11 1.10 1.79 

S t a n d a r d  devia t ions  

1 0.0350 0.0339 
2 0.00062 0.00066 0.00054 
3 0.00059 0.00061 0.00053 
4 0.00067 0.00070 0.00052 
5 0.19 0.20 0.096 

* Weights  same as those  used here.  Sayre ' s  leas t -squares  
p rog ram used on 100 reflections.  

Table 5. Correlation matrices from two cycles of 
refinement of grossularite structure 

37 ref lect ions to  which on ly  oxygen  ions c o n t r i b u t e  

Cycle 1 

1 

Cycle 2 

1 

1 2 3 4 5 

1-00 0.06 0.05 --0.05 0.87 
2 1.00 0.14 0.01 0.06 

3 1.00 0.23 0.06 
4 1.00 0.01 

5 1.00 

1 2 3 4 5 

1.00 0-07 0.01 -- 0.05 0.87 
2 1.00 0.15 0.03 0.06 

3 1.00 0.23 0.06 
4 1.00 0.01 

5 1.00 
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Sayre program we used applies the scale factor to 
the F0, there will be a tendency for the thermal 
parameters to calculate high and the scale factors 
low when this program is used (see Cruickshank, 
1959; Geller and Durand, 1960). Secondly, if there is 
any correlation at  all, the error estimates given by the 
diagonal term approximation will be low. 

Thirdly, if both the complete solution and diagonal 
term approximation truly converge, the parameter 
values obtained by both methods should be the same. 
When there is large correlation, both methods may 
fail to converge (i.e., there will be oscillations) or one 
or both methods may only appear to converge. When 
the complete solution does not really converge, and 
the diagonal term approximation appears to converge 
as in the present case, then only fortuitously could 
the results so obtained be physically correct, since it 
is not in the data  to provide the true values of the 
parameters. That  is to say, if enough iterations were 
made with the diagonal term approximation one 
should expect the ul t imate parameter behavior to be 
the same as would be obtained by the use of the 
complete normal equations matrix. I t  should be kept 
in mind, however, tha t  when high correlation exists, 
rounding-off errors in the matr ix  inversion could also 
cause difficulty in convergence. 

We now examine the results of the calculations on 
the grossularite data  to see what further conclusions 
we may obtain from the results. 

The complete solution of normal equations for the 
100 data  problem gave physically impossible values 
of the Ca and Si isotropic thermal parameters. This 
is true not only of the mean values, but  of the lower 
3a limit values: Cycle 4 values, Tables 1 and 2, are 
respectively 1.58 and 2-68 A~ for Ca and 1.25 and 
2.81 _~ respectively for Si. :Because it looks as though 
convergence was at tained for these parameters in 
the two cases, in the least squares sense these look 
like the correct values. The indeterminacy is shown 
mainly by the large standard deviations. No seemingly 
'correct' calculation, however, which gives physically 
impossible results even upon actual convergence can 
have a really sound basis. In  this  case, it is obvious 
tha t  the fundamental difficulty was a biased weight- 
hag of the data. 

In  a statistical problem involving two or more 
parameters, it is customary to speak of a confidence 
re~ion similar to the confidence limits in the univa- 
riate case. If there are n parameters, the confidence 
region can be represented by an ellipsoid in the n-di- 
mensional space. Having decided on the level of sig- 
nificance this ellipsoid will contain the true values of 
pl, p2, • •. ,  p~ with the desired probability. The center 
of the ellipsoid is given by the vector of the estimated 
mean values of the parameters ~(~1, ~ ,  . . . ,  ~ ) ;  the 
size and shape of the ellipsoid will depend on the in- 
verse of the covariance matrix, in our case, a, and on 
the desired significance level. 

In  order to make use of the theorems of mathe- 

matical statistics we assume a linear model and nor- 
mally distributed errors. Then (fi-la0)'a(fi-la0) is 
distributed as aeZ~ 2. Here ~ is the estimate of g0, 
the true la. The squared standard error of fit, s2= 

2 2 X(V(w)A)2 / (m-n) ,  is distributed as ~ Zm_n/(m-n).  
The ratio of the two 

( ~ -  ~0) 'a ( f i -  ~0) z~ 
-- nFn. m-n • 

X (V(w)A)2 2 Xrn - n / m - - n  

m - - n  

Thus a confidence region for ~, the mean vector, 
will be given by 

(fi-la0)'a(fi-V0) _< ns2Fn,m-n(oO 

where Fn,m-~(a) is the a probabili ty point for signif- 
icance level of the F-distribution with n and m - n  
degrees of freedom. That  is, if we compute this for a 
particular ~, we should have confidence 1 -  a tha t  
the ellipsoid (the expression with the = sign) con- 
tains ~0. 

We could test the null hypothesis, tha t  is: whether 
a given vector ~(~)=la0 by putt ing the vector ~(1) 
into the above expression also. On the other hand, 
should we wish to test the hypothesis ~(1)=~(-~), 
(~(1)_ ^ , ^ 1~(2))a(i~(~)-~ 2) should be compared with 
2nsZFn,m-n(~). If the problem is essentially linear, 
the matrix a should be essentially the same for the 
two samples. 

We now look at the different fi(~) obtained for 
grossularite. We know tha t  the data from which these 
vectors were obtained are highly correlated: they are 
not only from the same population, but  are the total  
sample or subsets of it. However, we shall proceed 
as i f  the ~(k) result from independent samples. We 
shall t reat  only the oxygen and scale parameters and 
assume that  the a matrix obtained from the second 
cycle of the 'oxygen only' calculation is common to 
all sets of data. The a matr ix is 

5 523 5 - 5 0 8  3 152 6 156 4 - 7 8 5  
8 337 7 --521 4 --723 4 151 

8 404 7 --791 4 --665 
8 307 5 --233 

4 154 

These numbers have the following meaning: The 
first digit is the power of 10 by which the remaining 
number beginning with a decimal point is multiplied. 
For example 5 523 means 0.523 x 105 and 4 - 7 8 5  
means -0 .785  x 104. (The a~, i4-j, are not xwitten 
because a~j =aj~.) We designate by: 

~a), the results of cycle 2, Table 4 
~(2), the results of cycle 4, Table 1 
~(~), the results of cycle 4, Table 2 

~(4), the results of Abrahams and Geller (see Table 4). 

We shall test the differences ~(2)_~(1), ~(a)_~(1) 
and ~(4)_~(1). These have the elements" 
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~ ( 2 ) _  ~(1) ~(3) __ ~(1) ~(4) __ ~(1) 

s 0"0669 0.0721 0"1062 
x --0.0002 --0.0006 --0.0005 
y 0.0003 --0.0004 -- 0.0002 
z 0.0003 --0.0008 0.0004 
T 0"24 0'34 0.69 

The value of s e is 14.09; the values of Eh,a2(a) and  
of 2ns2Fh,~2(c¢) = 140"9F5,~9(~) are: 

a(significanee level) 2'5, au (a) 2ns2-Fh, 3~ (a) 
0.10 2.04 287 
0.05 2.51 354 
0.025 2.99 421 
0.01 3.65 514 
0.005 4-17 588 

and  the values of (la(~)- ^ ^ ^ ' ^ la(~))a(la(k)- la(1)) are: 

k (~(~) _ fi(1))a(~(~) - -  ~ ( 1 ) ) '  

2 77.4 
3 95.9 
4 194-4 

In  order tha t  a difference be significant  at  a given 
level, (~(k)-~( i ) )a(~(~-~( i~) '  must  be greater t han  
2ns2Fh,8o(~). I t  is seen tha t  under the assumptions 
made none of these differences is significant,  and  thus, 
with the  present da ta  at  least, the  scale and oxygen 
the rmal  parameters  are also effectively indeterminate .  

I t  should be pointed out tha t  in the above calcula- 
tion, the appl icat ion of the complete a ma t r ix  to 

gives the values of these parameters  obtained 
from the diagonal  term approximation,  the error esti- 
mates tha t  would be obtained from the Bus ing-Levy  
program when ampli tudes  are evaluated with these 
par t icular  parameter  values. These error est imates are 
certain to be higher t han  those obtained from the 
diagonal term approximat ion  but  are also apt  to be 
somewhat  higher than  those obtained for k = l ,  2, 3. 

Even  if we s imply  took univar ia te  confidence l imits  
around each member  of each set we would see results 
in agreement  with those obtained above. Since it  is 
quite obvious tha t  the posi t ional  parameters  are not 
s ignif icantly different, we shall  only examine the scale 
and thermal  parameters  in this manner.  We first take 
3 a l imits  using the es t imated errors of each case. 

k 1 2 3 4 
S 0.7864-0"9964 0.8856-1.0392 0.8990-1"0328 
T 0.50-1.70 1.04-1.64 1.08-1.80 1.50-2.08 

We see tha t  the overlap is such as to indicate tha t  
these parameters  are not significantly different. 

We might  also examine the results of applying the  
Student  t-test to the differences of results for individual  
parameters.  This test  makes use of the diagonal  terms 
in the inverse mat r ix ;  tha t  is, to test  a difference: 

(pl(1)-  p~(2))/(2bi~s~)½ <_ tm-n(a) • 

Therefore t also includes effects of correlation. How- 

ever a confidence region result ing from the total  
number  of confidence intervals  

(p~(1)-po)/(bi~s2)½ <_ tm-n(o:) 

will be a rectangular  parallelotope in the n-dimensional  
space, and therefore only an approximat ion  to the 
ellipsoid described earlier. 

As an example,  let us apply  the t-test to p5 (4) - p 5  (1). 
We have:  

(ph(a)_ ph(1))/(2b55s2)½ = (To(a) - T0(1))/(0.20 [/2) 
=0 .69 /0 .28=2"46 .  

This appears to be significant at  the 2% level. Actu- 
a l ly  because there are five parameters  being con- 
sidered, the difference is real ly  significant at  the 10% 
(i.e., 1 -  (0-98) 5) level. I t  is seen tha t  th is  test  gives 
somewhat  greater significance to the difference than  
the earlier test in which the parameter  vector differ- 
ences were tested by  means  of the F-dis t r ibut ion.  

We caution the reader tha t  the above results are 
in theory no bet ter  t han  the assumptions on which 
they  are based. The assumption of independence of 
the sets of da ta  is unwarranted.  The results of the test 
using the Snedecor F-s ta t i s t ic  appear  to corroborate 
the conclusion tha t  could been drawn in tu i t ive ly  
namely,  the tempera ture  and scale parameters  are 
not de terminable  from the data,  but  the positional 
parameters  of the oxygen ions are accurately deter- 
minable.  

The test  described here should be very  useful in 
deciding whether  differences in results of s t ructural  
analysis  on different crystals of the same compound 
are significant. Also the s tandard  errors obtained 
from the least squares calculation are not alone suf- 
ficient to describe the results when there is high cor- 
relation. Such correlation could make  unl ikely  cer- 
ta in  combinat ions of values of parameters.  Thus in 
order to obta in  an  idea of the parameter  behavior,  
one should real ly  compute a confidence region by  use 
of the F-dis t r ibut ion as described earlier. This is only 
meaningful  however, when there is confidence tha t  
convergence has been at tained.  

T h e  t e t r a g o n a l  B a T i O a  s t r u c t u r e  

Some t ime ago Evans  (1952) carried out an investi- 
gation of the BaTiOa structure. He collected ext remely 
accurate hO1 data  with Mo Kc~ radiat ion employing 
a Geiger counter. Despite the fact tha t  he a t ta ined 
ex t remely  good agreement  between calculated and 
observed amplitudes,  he was forced to conclude tha t  
the structure was essential ly indeterminate .  From 
careful consideration of the values of certain pairs of 
derivatives,  Evans  concluded tha t  there was strong 
interdependence in five pairs of parameters.  In  fact, 
he also concluded tha t  it appeared tha t  the only 
parameters  tha t  could be established unambiguous ly  
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were flll(Ba), f111(Oi), and  fls3(OH) (Table 6). We de- 
cided to  examine  the  corre la t ion  m a t r i x  ob ta ined  
f rom a t  least  one r e f inemen t  cycle. 

Tab le  6. Results of least squares calculation 
on PaTiOs  

Parameter Starting 'Corrected' 
number Parameter values values 

1 s 1-000 0"9682 0"0142 
2 z(Oii) 0.5000 0.6460 0.0967 
3 fill(OH) 0.00941 0.01113 0.00351 
4 f122(OH) 0.01412 0.09369 0.03598 
5 ~3(OH) 0-01381 -- 0.01848* 0.01544 
6 z(Oi) --0.0260 --0.0551 0.0171 
7 ~(O~) 0.01412 0-01598 0-00484 
8 ~33(OI) 0.00767 0.00428 0.01514 
9 z(Ti) 0.5120 0.5313 0-01651 

10 flil(Ti) 0"00722 -- 0"00515* 0"00547 
11 fl3a(Ti) 0"00460 -- 0"00465* 0"00892 
12 flli(Ba) 0-0042~ 0.0037I 0.00033 
13 f133(Ba) 0.00430 0.00611 0.00120 

For starting values 
R fac tor  (neglect ing mul t ip l ic i ty)  ---- 0"049 

Weighted R factor, [Z( l/(w)A)2]½/[2:( ~/(W)Fo)2]½ : 0.049 
[2:(V(w)zl)~/(m-n)]½ = 0-810 

After calculation, estimated [27( ]/(w)Zl)2/(m-- n)]½ = 0.794 

* Physically impossible. 

I n  the  ca lcu la t ion  of s t ruc tu re  factors,  the  a tomic  
sca t te r ing  fac tors  for Ba  ~+ were t a k e n  f rom the  tab les  
ca lcula ted  by  Thomas  & Umeda  (1957) wi th  correct ion 
for dispersion* (Dauben  & Temple ton ,  1955). The  
a tomic  sca t te r ing  factors  for Ti 4+ were t a k e n  f rom the  
tables  of J ames  & Br ind l ey  (1931) also wi th  correc- 
t ion  for dispersion*.  The  a tomic  sca t te r ing  factors  of 
0 2- are those  of Berghuis  et al. (1955) for 0 corrected 
for ion ic i ty  as descr ibed elsewhere (e.g., Ab rahams  & 
Geller, 1958). The  da t a  used were those given in 
E v a n s '  repor t .  All d a t a  wi th  sin s 0/~ 2 < 0.25 which 
suffered f rom ex t inc t ion  were weighted  zero, the  re- 
ma inde r  being weighted  un i ty .  The  s t a r t ing  param-  
eters were essent ia l ly  those which E v a n s  fel t  to  give 
the  mos t  reasonable  s t ruc ture .  The resul ts  of the  
least  squares  cycle are g iven in Tab le  6. These resul ts  

* Real part only. 

are expected,  in view of the  discussion given by  Evans .  
The  A pi and  s t a n d a r d  dev ia t ions  are ve ry  large and  
i t  is obvious t h a t  real  convergence is una t t a inab l e .  
Now let  us look a t  the  corre la t ion  m a t r i x  g iven in 
Table  7. E v a n s  had  concluded t h a t  the  s t ronges t  in ter-  
ac t ions  occurred between z(Ti) and  f188(Ti), z(Oi) and  
fl33(0~), z(Oii) and  f122(OH), flll(Ti) and  fl22(0~i), and  
z(Ba) and  f183(Ba). We do no t  observe a ~ va lue  for 
the  last  one because in our  calculat ion,  z(Ba) was 
held  cons tant .  The  ~oi~ values  for the  others  are res- 
pec t ive ly  ~9,11----0-99, ~6,s -- 0"19, ~ 2 , ~ = - 0 - 8 2  and  
Qa,10 = -- 0.99. 

The va lue  of ~o6,s appears  to be qui te  low; the  o ther  
th ree  def in i te ly  corrobora te  E v a n s '  f indings.  The  pa- 
r ame te r  z(Oi) does in t e rac t  s t rongly  however  wi th  the  
fl88 of the  0 i i  a tom,  t h a t  is, ~ ,6  has the  va lue  0.83. 
I n  fact ,  there  are several  o ther  ve ry  s t rong in terac-  
t ions  as can be seen in Table  7, e.g., 91,1e, ~2,6, Q5,18, 
911,18. The large in terac t ions ,  especial ly ~9,11 and  e4,10, 
cause the  i n d e t e r m i n a c y  of the  pos i t iona l  pa rame te r s  
as well as of the  scale fac tor  a n d  of mos t  of the  t h e r m a l  
parameters ,  a t  least  based on the  p inacoida l  da t a  
used. 

Table 7 indicates that the parameters fill(Oil), 
/~ll(01) and /~33(01) are only weakly correlated with 
other parameters. However, we have not tested for 
interaction with the Ba parameters. 

To show further the reliability of some of the above 
conclusions, we give the results of a calculation on the 
PaTiO3 in which we inadvertently interchanged the 
values of the Evans' (1952) OH thermal parameters 

and 7. The starting parameters were those given 
in Table 8. Without considering statistical significance, 
many of the results differ from those obtained when 
the OHfl-values of Table 6 were used. Those which 
are not too different (see Tables 6 and 8) are for 

8, ~ l l ( O I I ) ,  z(OI) ,  /~l l(OI) ,  fll l(Ba), f183(Ba). 
The  corre la t ion  m a t r i x  ob t a ined  f rom this  calcula- 

t ion  is g iven  in  Table  9. Note  t h a t  in all  cases of large 
~o in Table  7, the  ana logous  values  are large in Tab le  9. 
This  includes values  do~zi to  0.5 in Table  7. (Anal- 
ogous values  for some of these are somewha t  lower in 
Tab le  9.) The  va lue  for D6,s in Table  9 is the  on ly  one 
t h a t  differs la rgely  from t h a t  in Table  7, thus  ind ica t -  
ing a h igh  sens i t iv i ty  of ~6,s to  the  values  of the  fl's 

Table  7. Correlation matrix from 

I 2 3 
1.00 - 0.58 - 0.02 
2 1.00 - 0.06 

3 1.00 
4 

4 5 6 
0.26 0.57 0.55 

--0.13 --0.82 --0.88 
--0.03 --0.20 --0.10 

I'00 0.02 0.11 
5 1.00 0.83 

6 1"00 
7 

PaTiO3 least-squares calculation 

7 8 9 10 11 12 13 
0.04 --0.08 --0.25 --0.22 0.27 0.82 --0.34 

--0"01 0.22 0.22 0"11 --0-23 --0"52 0.63 
0.07 --0-07 0-11 --0.03 --0-08 --0.08 0-13 
0"02 --0.01 0"11 --0"99 --0"10 0.26 0.08 
0"01 --0.08 --0-61 --0-01 0"59 0"55 --0-85 

--0"03 0-19 --0"20 --0-09 0"19 0-48 --0.57 
1"00 --0"25 --0"11 --0"03 0"12 0"01 --0-08 
8 1-00 0.31 0.01 --0-35 --0.I0 0.32 

9 1.00 -- 0.09 -- 0.99 -- 0-33 0.86 
i0 1.00 0-08 --0.23 --0.07 

Ii 1.00 0.34 --0.86 
12 1-00 -- 0-42 

13 1.00 
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Table  8. Least-squares calculation on B a T i 0 3  
Incorrect/3's for OII 

Parameter Starting 'Corrected' 
number Parameter values values 

1 s 1.0000 0.9713 0.0130 
2 z(OH) 0.5000 0.6143 0.0890 
3 f111(Oii) 0.01412 0.01076 0.00448 
4 f122(OH) 0-01412 0.05586 0.03655 
5 fla3(Oii) 0.00921 --0-01143* 0.01527 
6 z(Oi) -- 0.0260 -- 0.0606 0.0234 
7 fll~(Oi) 0.01412 0.01557 0.00507 
8 #33(0I) 0.00767 -- 0.00820* 0.01654 
9 z(Ti) 0.5120 0.5230 0.0193 

10 flll(Ti) 0.00722 0.00040 0-00577 
11 f133(Ti) 0"00460 -- 0"00004* 0"01022 
12 fl~(Ba) 0.00424 0.00371 0.00032 
13 f133(Ba) 0.00430 0.00578 0.00138 

For starting parameters 
R factor (neglecting multiplicity) = 0.051 

Weighted R factor, [2:(]/(w)zJ)~]½/[Z(~/(W)Fo)2]½ = 0.051 
[22(V(w)A)~/(m-n)]½ = 0.833 

After calculation, estimated [X( ~/(w)zJ)2/(m--n)]½ = 0.825 

* Physically impossible. 

of OH. The  resul t s  of th i s  ca lcu la t ion  are also ind ica t ive  
of the  non - l i nea r i t y  of the  model .  

R e f i n e m e n t  o f  t h e  s t r u c t u r e  o f  L i M n P O  4 

I n  a recen t  pape r  (Geller & D u r a n d ,  1960) on the  
r e f i n e m e n t  of the  s t ruc tu re  of L i M n P 0 4 ,  i t  was po in ted  
ou t  t h a t  neglec t  of of f -d iagonal  t e rms  of the  no rma l  
equa t ions  m a t r i x  d id  no t  s ign i f i can t ly  affect  the  
resul t s  of t he  leas t - squares  re f inement .  I n  fact ,  even 
w h e n  on ly  p inaco ida l  d a t a  were used a n d  the  off- 
d iagona l  t e rms  neglected,  the  resul t s  ( inc luding error 
es t imates) ,  especia l ly  on the  pos i t iona l  pa ramete r s ,  
d id  no t  differ  s ign i f i can t ly  f rom those  ob t a ined  wi th  
the  B u s i n g - L e v y  Program.  This  could be, b u t  is no t  
necessar i ly ,  an  i nd i ca t i on  t h a t  the  p a r a m e t e r s  are no t  
highly correlated.  

The  las t  r e f i n e m e n t  cycle was re run  to ob ta in  the  
corre la t ion  ma t r ix .  Of the  136 @~(i=~j) te rms,  on ly  
25 h a d  [@~j[ va lues  g rea te r  t h a n  0.05; on ly  12 va lues  
were g rea te r  t h a n  0.10. On ly  four  of the  va lues  were 
grea ter  t h a n  or equa l  to 0-35. These  were for s - T M n ,  

0"78 ; s -  Tp, 0-57 ; s -  To3, 0"35 a n d  TMn-- Tp, 0.47 ; 
these  n u m b e r s  ind ica te  fa i r ly  s u b s t a n t i a l  in te rdepen-  
dence of the  scale fac tor  a n d  the  t h e r m a l  p a r a m e t e r s  
of Mn a n d  P a n d  be tween  the  Mn a n d  P t h e r m a l  
pa ramete r s .  The  va lues  for s - T o 1  a n d  s - T o 2  were 
each 0.23 a n d  for TMn--To1, TMn--To2 a n d  TMn--To3, 
t h e y  were 0.15, 0.17, a n d  0.26 respec t ive ly .  All twelve  
g rea te r  t h a n  or equa l  to  0.10 invo lved  in t e rac t ions  
be tween  a scale fac tor  a n d  t h e r m a l  p a r a m e t e r  or 
be tween  two t h e r m a l  pa ramete r s .  

D i s c u s s i o n  

W e  ar r ive  now a t  the  discuss ion of several  ques t ions  
r ega rd ing  in t e rac t ions  among  p a r a m e t e r s :  

1. H o w  do s t rong  in t e rac t ions  arise ? 
2. I n  w h a t  ways  do t h e y  man i fe s t  t hemse lves  ? 
3. Is  i t  possible to  avo id  t h e m  ? 
4. W h a t  do we do a b o u t  t h e m  if we canno t  avo id  

t h e m  ? 

1. Origins of strong interactions 
I n i t i a l  i nd i ca t ion  of s t rong  in t e rac t ions  which  are 

r emoved  when  the  s t ruc tu re  is u l t i m a t e l y  re f ined  are 
caused b y  an  in i t i a l  t r ia l  s t ruc tu re  which  is far  f rom 
the  t rue  s t ruc tu re .*  D a t a  of poor q u a l i t y  m i g h t  also 
lead to coupl ing of p a r a m e t e r s  which are p a r t i c u l a r l y  
sens i t ive  to ce r t a in  of the  more poor ly  e s t i m a t e d  
in tens i t ies .  (But  see ear l ier  discussion of the  correla- 
t ion  coefficient.) 

The  mos t  i m p o r t a n t  cause of in t e rac t ions  ar ises  
f rom the  n a t u r e  of the  s t ruc tu re  on which  the  eva lua t ed  
de r iva t ives  depend.  This  has  been a m p l y  d e m o n s t r a t e d  
by  the  de ta i l ed  repor t  b y  E v a n s  on his work  on B a T i 0 3  
a n d  will  be fu r the r  cor robora ted  b y  the  fo r thcoming  
repor t  on the  g u a n i d i n i u m  a l u m i n u m  sul fa te  hexa-  
h y d r a t e  s t ruc tu re  r e f i n e m e n t  a t t e m p t s .  I n  pa r t i cu la r ,  
considerable  over lap  of c ry s t a l l og raph ica l l y  non- 
equ iva l en t  i n t e r a t o m i c  vectors  in the  th ree -d imen-  

* I t  should be kept in mind that an initially bad trial 
structure may also tend to uncouple parameters which in the 
'true' structure are coupled (Geller & Katz, 1962). Similarly 
data of poor quality might tend to uncouple parameters 
which should be coupled. 

Table  9. Correlation matrix from BaTi03  least-squares calculation with incorrect fl's for Oii 
7 8 9 10 11 12 13 
0.08 0.18 --0-12 --0.14 0.12 0.78 --0.20 

--0.10 --0.29 --0.02 --0-02 0.05 --0.42 0.56 
0.08 --0-10 0.07 0-00 --0.04 --0.05 0.08 
0.05 --0-01 0.20 --0-99 --0.22 0.16 0.22 
0.07 0.41 --0.51 0.12 0.46 0.50 --0.87 
0.06 0.58 --0.08 0.05 0-03 0.43 --0.60 
1.00 --0.21 --0.08 --0.06 0.09 0.04 --0.10 
8 1.00 0.09 0.03 --0.15 0.17 --0.12 

9 1.00 --0.18 --0.99 --0.25 0.79 
10 1.00 0.20 --0.14 --0.21 

11 1.00 --0-24 --0.76 
12 1.00 --0.38 

13 1.00 

1 2 3 4 5 6 
1.00 --0.40 0.01 0.18 0.41 0.40 
2 1-00 0.02 0.01 --0.79 --0.92 

3 1.00 0.00 --0.15 --0.06 
4 1.00 --0.12 --0.04 

5 1.00 0.85 
6 1.00 

7 
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sional Pa t t e r son  would be indicative of potent ia l ly  
strong interactions in pairs of positional parameters .*  
This would occur most often for s tructures which have 
a substructure.  

Strong interactions could arise from extremely 
incorrect weighting. For  example, in the grossularite 
case, we gave zero weight to all ampli tudes with large 
and independent  contributions from the metal  ions. 
To obtain physically meaningful  thermal  parameters  
for the  meta l  ions, it would be necessary to include 
a t  least some of these s t ructure  ampli tudes in the 
calculation. But  to obtain the  most  accurate  values 
of the  oxygen positional parameters  either those 
ampli tudes to which only oxygen ions contr ibute 
should be used or those actual ly  used in the original 
determinat ion.  

Another  source of difficulty could be the na ture  
of the atomic scattering factors (see In t roduct ion  and 
Discussion, P a r t  3). 

2. Manifestation of strong interactions 
The correlation ma t r ix  gives a measure of inter- 

actions or correlations between pairs of parameters .  
I t  is probable t ha t  difficulty in a t ta in ing con- 

vergence is often a manifes ta t ion of strong interact ion 
among parameters .  This is not  to imply t ha t  the 
discrepancy factor does not  decrease to a low value, 
but  ra ther  t ha t  it  does and tha t  the general features 
of the s t ructure  are obviously correct. Yet  oscillations 
occur with each subsequent  i terat ion and/or  inter- 
atomic distances obtained are improbable.  Very large 
error est imates resulting from the least-squares calcula- 
t ion also m a y  indicate strong interactions. 

I t  can be shown tha t  if any  I@iJl, i:~j, is exact ly  
equal to unity,  then  the correlation mat r ix  is singular. 
I t  then follows t h a t  the  de te rminant  of a is zero and 
therefore its inverse would not  exist. I n  this case, 
the  equations would not  have a unique solution. I t  
also follows t h a t  if two parameters  are very  near ly  
completely interdependent ,  the de terminant  of the 
normal  equations will be very  small. In  such a case, 
there will be a tendency for the error est imates to be 
large. However,  it  should be kept  in mind  tha t  the 
values of the A~ for weakly  correlated parameters  are 
often lower t h a n  those for highly correlated ones 

* For example, in the guanidinium aluminum sulfate 
hexahydrate structure (Geller & Katz, 1960; Geller & Booth, 
1959) there are two sets of crystallographically non-equivalent 
N atoms in 3c and 6d of P31m. The N atoms in 6d are related 
to those in 3c very nearly by ~ 0 ,  ~0 - - (x0z ;  Oxz;~z). 
Because the Patterson function, of course, adds a center of 
symmetry, sets of C-N and A1-N vectors will overlap. And 
because of the nature of the structure, other peaks involving 
these nitrogens will overlap. It  is seen that derivatives of 
the structure amplitudes with respect to the nitrogen positional 
parameters will have closely related values, the exact depen- 
dence breaking down only as a result of different anisotropic 
thermal parameters and differences from the exact relationship 
indicated above. This is the kind of situation found by Evans 
in his analysis of the BaTiO a situation. 
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although this is not universally true. Also, as pointed 
out earlier when the value of the determinant of a 
is very small, rounding-off errors in the matrix inver- 
sion also may cause difficulty in convergence. 

3. Possibility of avoiding strong interactions 
I f  the interactions are known to  arise purely from 

the na ture  of the s tructure,  as in the cases of BaTi03 
and guanidinium aluminum sulfate hexahydra te ,  it is 
improbable t ha t  they  can be entirely avoided either 
by changing the s t ructure  analysis technique or by  
changing the weighting. Because of the difference in 
the na ture  of the X - r a y  and the neutron scat ter ing 
factor, neutron s t ructure  ampli tude derivatives might  
not  couple parameters  which X- ray  s t ructure  ampli- 
tude derivatives tend  to couple. 

Measurement  of absolute intensities would decrease 
the dependence of other parameters  on scale factors. 
However,  because these intensities will have an error 
associated with them, if the scale factors are not  
allowed to vary ,  this error will be absorbed by  the  
thermal  parameters  or others with which the scale 
factors would tend to interact .  

In  simple cases, reconsideration of the weighting 
technique might  lead to uncoupling. However,  from 
a realistic point  of view, all weighting procedures are 
essentially arbi t rary .  Thus, if subs tant ia l ly  different 
results are obtained by two different bu t  seemingly 
logical weighting methods,  the lack of reliable informa- 
tion for weighting has created an indeterminacy in the  
problem. 

I t  is interesting to contemplate  the possibility of 
finding by  some means the exact  relat ion between 
highly correlated parameters .  In  such a case, it should 
then be possible also to refine an otherwise 'unrefin- 
able'  s tructure.  

4. Procedure to follow if  it appears that strong inter- 
actions cannot be avoided 
I t  is certainly f rus t ra t ing  to find af ter  having 

collected and processed the da ta  and carried out a 
number  of refinement cycles, sometimes a t  substant ia l  
financial expense, tha t  a l though a s t ructure  is gener- 
ally correct, it is indeterminate  in detail. This is an 
extreme case. However,  the X - r a y  s t ructure  analyses 
of BaTiOa (Evans,  1952), of HCN (Dulmage & 
Lipscomb, 1951) and of guanidinium aluminum sulfate 
hexahydra te  are in this category. In  the extreme 
case one should call a hal t  to the work a t  the point  
t ha t  one is convinced and report  the experience. I t  is 
hoped tha t  this paper  and the subsequent one on the 
guanidinium aluminum sulfate hexahydra te  will con- 
t r ibute  to early recognition of such cases. 

In  fact,  the present  work suggests t ha t  whenever 
possible a s t ructure  should be solved with the minimum 
possible data .  Once a fair tr ial  s t ructure  is obtained,  
it is then possible to calculate the correlation mat r ix  
with the inclusion of any  number  of calculated deriva- 
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t i res  even though the  to ta l  d a t a  have  not  been 
measured.  A judgment  of s e could be made  from those 
da ta  used to solve the  s t ructure  and  an est imate  of 
the  confidence region could then also be made.  

All this might  not  suffice, however, to give the 
individual  invest igator  the confidence needed to 
abandon  the work even if there is strong indication 
t h a t  a refined s t ructure  is not  feasible. 

The cases which are not  extreme are those in which 
there m a y  be apparen t  convergence bu t  some large 
correlations and error estimates.  The calculation of 
confidence regions should be worthwhile in such cases, 
a l though with a large number  of correlated parameters ,  
it is doubtful  t ha t  it will be ext remely  useful. I t  is 
especially impor t an t  however to note by  examinat ion  
of the correlation ma t r ix  which of the  parameters  
appear  to be correlated and which of them do not. 

The au thor  wishes to thank  Dr  W. C. Hami l ton  for 
his interest  and constructive criticism, Dr  C. L. Mal- 
lows for several enlightening discussions on ma- 
themat ica l  statistics, Dr  H. T. Evans ,  J r .  for per- 
mission to use the da t a  and  quote some of the  results  
given in his repor t  on BaTi03, Dr  B. C. Frazer  for 
discussions of the neutron diffract ion investigation 
(Danner,  Frazer  & Pepinsky,  1960) of the BaTi03 
s tructure,  and Misses D. C. Leagus and  B. B. Cetlin 
for wri t ing the p rogram patches for the Bus ing-Levy  
Program.  

Several books and a paper  by  Box & Coutie (1956) 
were useful in this work. The books are:  Acton (1959), 
Anderson (1958), Scheffg (1959) and Wilks (1946). 
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P o t a s s i u m  O s m y l  C h l o r i d e  - -  R e f i n e m e n t  of the  C r y s t a l  S t r u c t u r e *  

BY F. H. K~USE 

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 

(Received 12 October 1960) 

The crystal structure of K2OsO2C14, first reported by Hoard & Grenko (1934), has been refined by 
least-squares and Fourier calculations using three dimensional data. The crystals are tetragonal, 
14/mmm, with a 0 =6-991 +__0.004 and c o =8.752_+0.006 A. The two primary bond lengths in the 
OsO~C14-- ion were refined to: Os-O: 1.750+0-022 /~ and Os-CI: 2-379_+0-005 •. 

In troduc t ion  

The crystal  s t ructure  of potassium osmyl chloride, 
KeOs02C14, was first  de termined by  H o a r d  & Grenko 

* This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 

(1934) (referred as H.&G. in remaining text) .  At  t h a t  
t ime the unit  cell dimensions, space group and ap- 
proximate  values for the var iable  parameters  of oxygen 
and  chlorine were established, as well as the location 
of the  osmium and potass ium atoms in special posi- 
tions. I n  conjunction with an extensive s tudy  of the  


